
ISO/IEC JTC 1/SC 22/WG 23 N 0258
Draft language-specific annex for Ada

Date 22 June 2010
Contributed by SC 22/WG 9
Original file name N507, Annex Ada Draft 1, 20 June 2010.doc
Notes

1

ISO/IEC JTC1/SC22/WG9 N 507 1
Draft 1, 20 June 2010, Alan Burns, Joyce L Tokar (editors) 2
 3
 4

Annex Ada 5
(informative) 6

Ada.Specific information for vulnerabilities 7

Ada.3.1.0 Status and history 8

20100619 WG9 9
 10
Every vulnerability description of Clause 6 of the main document is addressed in the annex in the 11
same order even if there is simply a note that it is not relevant to Ada. 12
 13
This Annex specifies the characteristics of the Ada programming language that are related to the 14
vulnerabilities defined in this Technical Report. When applicable, the techniques to mitigate the 15
vulnerability in Ada applications are described in the associated section on the vulnerability. 16

Ada.1 Identification of standards and associated documentation 17

ISO/IEC 8652:1995 Information Technology – Programming Languages—Ada. 18
 19
ISO/IEC 8652:1995/COR.1:2001, Technical Corrigendum to Information Technology – 20
Programming Languages—Ada. 21
 22
ISO/IEC 8652:1995/AMD.1:2007, Amendment to Information Technology – Programming 23
Languages—Ada. 24
 25
ISO/IEC TR 15942:2000, Guidance for the Use of Ada in High Integrity Systems. 26
 27
ISO/IEC TR 24718:2005, Guide for the use of the Ada Ravenscar Profile in high integrity 28
systems. 29
 30
Lecture Notes on Computer Science 5020, “Ada 2005 Rationale: The Language, the Standard 31
Libraries,” John Barnes, Springer, 2008. 32
 33
Ada 95 Quality and Style Guide, SPC-91061-CMC, version 02.01.01. Herndon, Virginia: Software 34
Productivity Consortium, 1992. 35
 36
Ada Language Reference Manual, The consolidated Ada Reference Manual, consisting of the 37
international standard (ISO/IEC 8652:1995): Information Technology -- Programming Languages 38
-- Ada, as updated by changes from Technical Corrigendum 1 (ISO/IEC 8652:1995:TC1:2000), 39
and Amendment 1 (ISO/IEC 8526:AMD1:2007). 40
 41
IEEE 754-2008, IEEE Standard for Binary Floating Point Arithmetic, IEEE, 2008. 42
 43
IEEE 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic, IEEE, 1987. 44

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22983�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35451�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45001�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29575�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38828�
http://www.adaic.com/standards/ada05.html�

2

Ada.2 General terminology and concepts 1

Access object: An object of an access type. 2

Access-to-Subprogram: A pointer to a subprogram (function or procedure). 3

Access type: The type for objects that designate (point to) other objects. 4

Access value: The value of an access type; a value that is either null or designates (points at) 5
another object. 6

Attributes: Predefined characteristics of types and objects; attributes may be queried using 7
syntax of the form <entity>'<attribute_name>. 8

Bounded Error: An error that need not be detected either prior to or during run time, but if not 9
detected, then the range of possible effects shall be bounded. 10

Case statement: A case statement provides multiple paths of execution dependent upon the 11
value of the case expression. Only one of alternative sequences of statements will be selected. 12

Case expression: The case expression of a case statement is a discrete type. 13

Case choices: The choices of a case statement must be of the same type as the type of the 14
expression in the case statement. All possible values of the case expression must be covered by 15
the case choices. 16

Compilation unit: The smallest Ada syntactic construct that may be submitted to the compiler. 17
For typical file-based implementations, the content of a single Ada source file is usually a single 18
compilation unit. 19

Configuration pragma: A directive to the compiler that is used to select partition-wide or system-20
wide options. The pragma applies to all compilation units appearing in the compilation, unless 21
there are none, in which case it applies to all future compilation units compiled into the same 22
environment. 23

Controlled type: A type descended from the language-defined type Controlled or 24
Limited_Controlled. A controlled type is a specialized type in Ada where an implementer can 25
tightly control the initialization, assignment, and finalization of objects of the type. This supports 26
techniques such as reference counting, hidden levels of indirection, reliable resource allocation, 27
etc. 28

Discrete type: An integer type or an enumeration type. 29

Discriminant: A parameter for a composite type. It can control, for example, the bounds of a 30
component of the type if the component is an array. A discriminant for a task type can be used to 31
pass data to a task of the type upon creation. 32

Erroneous execution: The unpredictable result arising from an error that is not bounded by the 33
language, but that, like a bounded error, need not be detected by the implementation either prior 34
to or during run time. 35

Exception: Represents a kind of exceptional situation. There are set of predefined exceptions in 36
Ada in package Standard: Constraint_Error, Program_Error, Storage_Error, and Tasking_Error; one of 37
them is raised when a language-defined check fails. 38

Expanded name: A variable V inside subprogram S in package P can be named V, or P.S.V. The 39
name V is called the direct name while the name P.S.V is called the expanded name. 40

Idempotent behaviour: The property of an operations that has the same effect whether applied 41
just once or multiple times. An example would be an operation that rounded a number up to the 42
nearest even integer greater than or equal to its starting value. 43

Implementation defined: Aspects of semantics of the language specify a set of possible effects; 44
the implementation may choose to implement any effect in the set. Implementations are required 45
to document their behaviour in implementation-defined situations. 46

3

Modular type: A modular type is an integer type with values in the range 0 .. modulus - 1. The 1
modulus of a modular type can be up to 2**N for N-bit word architectures. A modular type has 2
wrap-around semantics for arithmetic operations, bit-wise "and" and "or" operations, and 3
arithmetic and logical shift operations. 4
 5
Partition: A partition is a program or part of a program that can be invoked from outside the Ada 6
implementation. 7

Pointer: Synonym for “access object.” 8

Pragma: A directive to the compiler. 9

Pragma Atomic: Specifies that all reads and updates of an object are indivisible. 10

Pragma Atomic_Components: Specifies that all reads and updates of an element of an array are 11
indivisible. 12

Pragma Convention: Specifies that an Ada entity should use the conventions of another 13
language. 14

Pragma Detect_Blocking: A configuration pragma that specifies that all potentially blocking 15
operations within a protected operation shall be detected, resulting in the Program_Error exception 16
being raised. 17

Pragma Discard_Names: Specifies that storage used at run-time for the names of certain entities 18
may be reduced. 19

Pragma Export: Specifies an Ada entity to be accessed by a foreign language, thus allowing an 20
Ada subprogram to be called from a foreign language, or an Ada object to be accessed from a 21
foreign language. 22

Pragma Import: Specifies an entity defined in a foreign language that may be accessed from an 23
Ada program, thus allowing a foreign-language subprogram to be called from Ada, or a foreign-24
language variable to be accessed from Ada. 25

Pragma Normalize_Scalars: A configuration pragma that specifies that an otherwise uninitialized 26
scalar object is set to a predictable value, but out of range if possible. 27

Pragma Pack: Specifies that storage minimization should be the main criterion when selecting 28
the representation of a composite type. 29

Pragma Restrictions: Specifies that certain language features are not to be used in a given 30
application. For example, the pragma Restrictions (No_Obsolescent_Features) prohibits the use of 31
any deprecated features. This pragma is a configuration pragma which means that all program 32
units compiled into the library must obey the restriction. 33

Pragma Suppress: Specifies that a run-time check need not be performed because the 34
programmer asserts it will always succeed. 35

Pragma Unchecked_Union: Specifies an interface correspondence between a given 36
discriminated type and some C union. The pragma specifies that the associated type shall be 37
given a representation that leaves no space for its discriminant(s). 38

Pragma Volatile: Specifies that all reads and updates on a volatile object are performed directly 39
to memory. 40

Pragma Volatile_Components: Specifies that all reads and updates of an element of an array are 41
performed directly to memory. 42

Scalar type: A discrete or a real type. 43

Subtype declaration: A construct that allows programmers to declare a named entity that defines 44
a possibly restricted subset of values of an existing type or subtype, typically by imposing a 45
constraint, such as specifying a smaller range of values. 46

4

Task: A task represents a separate thread of control that proceeds independently and 1
concurrently between the points where it interacts with other tasks. An Ada program may be 2
comprised of a collection of tasks. 3

Unsafe Programming: In recognition of the occasional need to step outside the type system or to 4
perform “risky” operations, Ada provides clearly identified language features to do so. Examples 5
include the generic Unchecked_Conversion for unsafe type conversions or Unchecked_Deallocation 6
for the deallocation of heap objects regardless of the existence of surviving references to the 7
object. If unsafe programming is employed in a unit, then the unit needs to specify the respective 8
generic unit in its context clause, thus identifying potentially unsafe units. Similarly, there are 9
ways to create a potentially unsafe global pointer to a local object, using the Unchecked_Access 10
attribute. A restriction pragma may be used to disallow uses of Unchecked_Access. 11

Ada.3.BRS Obscure Language Features [BRS] 12

Ada.3.BRS.1 Terminology and features 13

Ada.3.BRS.2 Description of vulnerability 14

Ada is a rich language and provides facilities for a wide range of application areas. Because 15
some areas are specialized, it is likely that a programmer not versed in a special area might 16
misuse features for that area. For example, the use of tasking features for concurrent 17
programming requires knowledge of this domain. Similarly, the use of exceptions and exception 18
propagation and handling requires a deeper understanding of control flow issues than some 19
programmers may possess. 20

Ada.3.BRS.3 Avoiding the vulnerability or mitigating its effects 21

The pragma Restrictions can be used to prevent the use of certain features of the language. Thus, 22
if a program should not use feature X, then writing pragma Restrictions (No_X); ensures that any 23
attempt to use feature X prevents the program from compiling. 24

Similarly, features in a Specialized Needs Annex should not be used unless the application area 25
concerned is well-understood by the programmer. 26

Ada.3.BRS.4 Implications for standardization 27

None 28

Ada.3.BRS.5 Bibliography 29

None 30

Ada.3.BQF Unspecified Behaviour [BQF] 31

Ada.3.BQF.1 Terminology and features 32

Generic formal subprogram: A parameter to a generic package used to specify a subprogram or 33
operator. 34

Ada.3.BQF.2 Description of vulnerability 35

In Ada, there are two main categories of unspecified behaviour, one having to do with unspecified 36
aspects of normal run-time behaviour, and one having to do with bounded errors, errors that need 37
not be detected at run-time but for which there is a limited number of possible run-time effects 38
(though always including the possibility of raising Program_Error). 39
 40

5

For the normal behaviour category, there are several distinct aspects of run-time behaviour that 1
might be unspecified, including: 2

• Order in which certain actions are performed at run-time; 3

• Number of times a given element operation is performed within an operation invoked on 4
a composite or container object; 5

• Results of certain operations within a language-defined generic package if the actual 6
associated with a particular formal subprogram does not meet stated expectations (such 7
as “<” providing a strict weak ordering relationship); 8

• Whether distinct instantiations of a generic or distinct invocations of an operation 9
produce distinct values for tags or access-to-subprogram values. 10

 11
The index entry in the Ada Standard for unspecified provides the full list. Similarly, the index entry 12
for bounded error provides the full list of references to places in the Ada Standard where a 13
bounded error is described. 14
 15
Failure can occur due to unspecified behaviour when the programmer did not fully account for the 16
possible outcomes, and the program is executed in a context where the actual outcome was not 17
one of those handled, resulting in the program producing an unintended result. 18

Ada.3.BQF.3 Avoiding the vulnerability or mitigating its effects 19

As in any language, the vulnerability can be reduced in Ada by avoiding situations that have 20
unspecified behaviour, or by fully accounting for the possible outcomes. 21
 22
Particular instances of this vulnerability can be avoided or mitigated in Ada in the following ways: 23

• For situations where order of evaluation or number of evaluations is unspecified, using 24
only operations with no side-effects, or idempotent behaviour, will avoid the vulnerability; 25

• For situations involving generic formal subprograms, care should be taken that the actual 26
subprogram satisfies all of the stated expectations; 27

• For situations involving unspecified values, care should be taken not to depend on 28
equality between potentially distinct values; 29

• For situations involving bounded errors, care should be taken to avoid the situation 30
completely, by ensuring in other ways that all requirements for correct operation are 31
satisfied before invoking an operation that might result in a bounded error. See the Ada 32
Annex section Ada.3.28 on Initialization of Variables [LAV] for a discussion of uninitialized 33
variables in Ada, a common cause of a bounded error. 34

Ada.3.BQF.4 Implications for standardization 35

When appropriate, language-defined checks should be added to reduce the possibility of multiple 36
outcomes from a single construct, such as by disallowing side-effects in cases where the order of 37
evaluation could affect the result. 38

Ada.3.BQF.5 Bibliography 39

None 40

6

Ada.3.EWF Undefined Behaviour [EWF] 1

Ada.3.EWF.1 Terminology and features 2

Abnormal Representation: The representation of an object is incomplete or does not represent 3
any valid value of the object’s subtype. 4

Ada.3.EWF.2 Description of vulnerability 5

In Ada, undefined behaviour is called erroneous execution, and can arise from certain errors that 6
are not required to be detected by the implementation, and whose effects are not in general 7
predictable. 8
 9
There are various kinds of errors that can lead to erroneous execution, including: 10

• Changing a discriminant of a record (by assigning to the record as a whole) while there 11
remain active references to subcomponents of the record that depend on the 12
discriminant; 13

• Referring via an access value, task id, or tag, to an object, task, or type that no longer 14
exists at the time of the reference; 15

• Referring to an object whose assignment was disrupted by an abort statement, prior to 16
invoking a new assignment to the object; 17

• Sharing an object between multiple tasks without adequate synchronization; 18

• Suppressing a language-defined check that is in fact violated at run-time; 19

• Specifying the address or alignment of an object in an inappropriate way; 20

• Using Unchecked_Conversion, Address_To_Access_Conversions, or calling an imported 21
subprogram to create a value, or reference to a value, that has an abnormal 22
representation. 23

The full list is given in the index of the Ada Standard under erroneous execution. 24
 25
Any occurrence of erroneous execution represents a failure situation, as the results are 26
unpredictable, and may involve overwriting of memory, jumping to unintended locations within 27
memory, etc. 28

Ada.3.EWF.3 Avoiding the vulnerability or mitigating its effects 29

The common errors that result in erroneous execution can be avoided in the following ways: 30

• All data shared between tasks should be within a protected object or marked Atomic, 31
whenever practical; 32

• Any use of Unchecked_Deallocation should be carefully checked to be sure that there are 33
no remaining references to the object; 34

• pragma Suppress should be used sparingly, and only after the code has undergone 35
extensive verification. 36

The other errors that can lead to erroneous execution are less common, but clearly in any given 37
Ada application, care must be taken when using features such as: 38

• abort; 39

• Unchecked_Conversion; 40

• Address_To_Access_Conversions; 41

7

• The results of imported subprograms; 1

• Discriminant-changing assignments to global variables. 2

The mitigations described in Section 6.EWF.5 are applicable here. 3

Ada.3.EWF.4 Implications for standardization 4

When appropriate, language-defined checks should be added to reduce the possibility of 5
erroneous execution, such as by disallowing unsynchronized access to shared variables. 6

Ada.3.EWF.5 Bibliography 7

None 8

Ada.3.FAB Implementation-Defined Behaviour [FAB] 9

Ada.3.FAB.1 Terminology and features 10

None 11

Ada.3.FAB.2 Description of vulnerability 12

There are a number of situations in Ada where the language semantics are implementation 13
defined, to allow the implementation to choose an efficient mechanism, or to match the 14
capabilities of the target environment. Each of these situations is identified in Annex M of the Ada 15
Standard, and implementations are required to provide documentation associated with each item 16
in Annex M to provide the programmer with guidance on the implementation choices. 17
 18
A failure can occur in an Ada application due to implementation-defined behaviour if the 19
programmer presumed the implementation made one choice, when in fact it made a different 20
choice that affected the results of the execution. In many cases, a compile-time message or a 21
run-time exception will indicate the presence of such a problem. For example, the range of 22
integers supported by a given compiler is implementation defined. However, if the programmer 23
specifies a range for an integer type that exceeds that supported by the implementation, then a 24
compile-time error will be indicated, and if at run time a computation exceeds the base range of 25
an integer type, then a Constraint_Error is raised. 26
 27
Failure due to implementation-defined behaviour is generally due to the programmer presuming a 28
particular effect that is not matched by the choice made by the implementation. As indicated 29
above, many such failures are indicated by compile-time error messages or run-time exceptions. 30
However, there are cases where the implementation-defined behaviour might be silently 31
misconstrued, such as if the implementation presumes Ada.Exceptions.Exception_Information 32
returns a string with a particular format, when in fact the implementation does not use the 33
expected format. If a program is attempting to extract information from Exception_Information for 34
the purposes of logging propagated exceptions, then the log might end up with misleading or 35
useless information if there is a mismatch between the programmer’s expectation and the actual 36
implementation-defined format. 37

Ada.3.FAB.3 Avoiding the vulnerability or mitigating its effects 38

Many implementation-defined limits have associated constants declared in language-defined 39
packages, generally package System. In particular, the maximum range of integers is given by 40
System.Min_Int .. System.Max_Int, and other limits are indicated by constants such as 41
System.Max_Binary_Modulus, System.Memory_Size, System.Max_Mantissa, etc. Other 42
implementation-defined limits are implicit in normal ‘First and ‘Last attributes of language-defined 43
(sub) types, such as System.Priority’First and System.Priority’Last. Furthermore, the 44

8

implementation-defined representation aspects of types and subtypes can be queried by 1
language-defined attributes. Thus, code can be parameterized to adjust to implementation-2
defined properties without modifying the code. 3

• Programmers should be aware of the contents of Annex M of the Ada Standard and 4
avoid implementation-defined behaviour whenever possible. 5

• Programmers should make use of the constants and subtype attributes provided in 6
package System and elsewhere to avoid exceeding implementation-defined limits. 7

• Programmers should minimize use of any predefined numeric types, as the ranges and 8
precisions of these are all implementation defined. Instead, they should declare their own 9
numeric types to match their particular application needs. 10

• When there are implementation-defined formats for strings, such as Exception_ 11
Information, any necessary processing should be localized in packages with 12
implementation-specific variants. 13

Ada.3.FAB.4 Implications for standardization 14

Language standards should specify relatively tight boundaries on implementation-defined 15
behaviour whenever possible, and the standard should highlight what levels represent a portable 16
minimum capability on which programmers may rely. For languages like Ada that allow user 17
declaration of numeric types, the number of predefined numeric types should be minimized (for 18
example, strongly discourage or disallow declarations of Byte_Integer, Very_Long_Integer, etc., in 19
package Standard). 20

Ada.3.FAB.5 Bibliography 21

None 22

Ada.3.MEM Deprecated Language Features [MEM] 23

Ada.3.MEM.1 Terminology and features 24

Obsolescent Features: Ada has a number of features that have been declared to be obsolescent; 25
this is equivalent to the term deprecated. These are documented in Annex J of the Ada 26
Reference Manual. 27

Ada.3.MEM.2 Description of vulnerability 28

If obsolescent language features are used, then the mechanism of failure for the vulnerability is 29
as described in Section 6.MEM.3. 30

Ada.3.MEM.3 Avoiding the vulnerability or mitigating its effects 31

• Use pragma Restrictions (No_Obsolescent_Features) to prevent the use of any obsolescent 32
features. 33

• Refer to Annex J of the Ada reference manual to determine if a feature is obsolescent. 34

Ada.3.MEM.4 Implications for standardization 35

None. 36

Ada.3.MEM.5 Bibliography 37
None 38

9

Ada.3.NMP Pre-Processor Directives [NMP] 1

This vulnerability is not applicable to Ada as Ada does not have a pre-processor. 2

Ada.3.NAI Choice of Clear Names [NAI] 3

Ada.3.NAI.1 Terminology and features 4

Identifier: Identifier is the Ada term that corresponds to the term name. 5
 6
Ada is not a case-sensitive language. Names may use an underscore character to improve 7
clarity. 8

Ada.3.NAI.2 Description of vulnerability 9

There are two possible issues: the use of the identical name for different purposes (overloading) 10
and the use of similar names for different purposes. 11

This vulnerability does not address overloading, which is covered in Section Ada.3.YOW. 12

The risk of confusion by the use of similar names might occur through: 13

• Mixed casing. Ada treats upper and lower case letters in names as identical. Thus no 14
confusion can arise through an attempt to use Item and ITEM as distinct identifiers with 15
different meanings. 16

• Underscores and periods. Ada permits single underscores in identifiers and they are 17
significant. Thus BigDog and Big_Dog are different identifiers. But multiple underscores 18
(which might be confused with a single underscore) are forbidden, thus Big__Dog is 19
forbidden. Leading and trailing underscores are also forbidden. Periods are not permitted 20
in identifiers at all. 21

• Singular/plural forms. Ada does permit the use of identifiers which differ solely in this 22
manner such as Item and Items. However, the user might use the identifier Item for a 23
single object of a type T and the identifier Items for an object denoting an array of items 24
that is of a type array (…) of T. The use of Item where Items was intended or vice versa will 25
be detected by the compiler because of the type violation and the program rejected so no 26
vulnerability would arise. 27

• International character sets. Ada compilers strictly conform to the appropriate 28
international standard for character sets. 29

• Identifier length. All characters in an identifier in Ada are significant. Thus 30
Long_IdentifierA and Long_IdentifierB are always different. An identifier cannot be split 31
over the end of a line. The only restriction on the length of an identifier is that enforced by 32
the line length and this is guaranteed by the language standard to be no less than 200. 33

Ada permits the use of names such as X, XX, and XXX (which might all be declared as integers) 34
and a programmer could easily, by mistake, write XX where X (or XXX) was intended. Ada does 35
not attempt to catch such errors. 36

The use of the wrong name will typically result in a failure to compile so no vulnerability will arise. 37
But, if the wrong name has the same type as the intended name, then an incorrect executable 38
program will be generated. 39

Ada.3.NAI.3 Avoiding the vulnerability or mitigating its effects 40

This vulnerability can be avoided or mitigated in Ada in the following ways: avoid the use of 41
similar names to denote different objects of the same type. See the Ada Quality and Style Guide. 42

10

Ada.3.NAI.4 Implications for standardization 1

None 2

Ada.3.NAI.5 Bibliography 3

None 4

Ada.3.AJN Choice of Filenames and other External Identifiers [AJN] 5

Ada.3.AJN.1 Terminology and features 6

Ada enables programs to interface to external identifiers in various ways. Filenames can be 7
specified when files are opened by the use of the packages for input and output such as Text_IO. 8
In addition the packages Ada.Directories, Ada.Command_Line, and Ada.Environment_Variables give 9
access to various external features. However, in all cases, the form and meaning of the external 10
identifiers is stated to be implementation-defined. 11

Ada.3.AJN.2 Description of vulnerability 12

As described in Section 6.AJN. 13

Ada.3.AJN.3 Avoiding the vulnerability or mitigating its effects 14

As described in Section 6.AJN. 15

Ada.3.AJN.4 Implications for standardization 16

None 17

Ada.3.AJN.5 Bibliography 18

None 19

Ada.3.XYR Unused Variable [XYR] 20

Ada.3.XYR.1 Terminology and features 21

Dead store: An assignment to a variable that is not used in subsequent instructions. A variable 22
that is declared but neither read nor written to in the program is an unused variable. 23

Ada requires all variables to be explicitly declared. 24

Ada.3.XYR.2 Description of vulnerability 25

Variables might be unused for various reasons: 26

• Declared for future use. The programmer might have declared the variable knowing that it 27
will be used when the program is complete or extended. Thus, in a farming application, a 28
variable Pig might be declared for later use if the farm decides to expand out of dairy 29
farming. 30

• The declaration is wrong. The programmer might have mistyped the identifier of the 31
variable in its declaration, thus Peg instead of Pig. 32

• The intended use is wrong. The programmer might have mistyped the identifier of the 33
variable in its use, thus Pug instead of Pig. 34

An unused variable declared for later use does not of itself introduce any vulnerability. The 35

11

compiler will warn of its absence of use if such warnings are switched on. 1

If the declaration is wrong, then the program will not compile assuming that the uses are correct. 2
Again there is no vulnerability. 3

If the use is wrong, then there is a vulnerability if a variable of the same type with the same name 4
is also declared. Thus, if the program correctly declares Pig and Pug (of the same type) but 5
inadvertently uses Pug instead of Pig, then the program will be incorrect but will compile. 6

Ada.3.XYR.3 Avoiding the vulnerability or mitigating its effects 7

• Do not declare variables of the same type with similar names. Use distinctive identifiers 8
and the strong typing of Ada (for example through declaring specific types such as 9
Pig_Counter is range 0 .. 1000; rather than just Pig: Integer;) to reduce the number of 10
variables of the same type. 11

 12
• Unused variables can be easily detected by the compiler, whereas dead stores can be 13

detected by static analysis tools. 14

Ada.3.XYR.4 Implications for standardization 15

None 16

Ada.3.XYR.5 Bibliography 17

None 18

Ada.3.YOW Identifier Name Reuse [YOW] 19

Ada.3.YOW.1 Terminology and features 20

Hiding: A declaration can be hidden, either from direct visibility, or from all visibility, within certain 21
parts of its scope. Where hidden from all visibility, it is not visible at all (neither using a direct_name 22
nor a selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using 23
a selector_name is still possible. 24

Homograph: Two declarations are homographs if they have the same name, and do not overload 25
each other according to the rules of the language. 26

Ada.3.YOW.2 Description of vulnerability 27

Ada is a language that permits local scope, and names within nested scopes can hide identical 28
names declared in an outer scope. As such it is susceptible to the vulnerability of 6.YOW. For 29
subprograms and other overloaded entities the problem is reduced by the fact that hiding also 30
takes the signatures of the entities into account. Entities with different signatures, therefore, do 31
not hide each other. 32

The failure associated with common substrings of identifiers cannot happen in Ada because all 33
characters in a name are significant (see section Ada.3.NAI). 34

Name collisions with keywords cannot happen in Ada because keywords are reserved. Library 35
names Ada, System, Interfaces, and Standard can be hidden by the creation of subpackages. For all 36
except package Standard, the expanded name Standard.Ada, Standard.System and 37
Standard.Interfaces provide the necessary qualification to disambiguate the names. 38

Ada.3.YOW.3 Avoiding the vulnerability or mitigating its effects 39

Use expanded names whenever confusion may arise. 40

12

Ada.3.YOW.4 Implications for standardization 1
Ada could define a pragma Restrictions identifier No_Hiding that forbids the use of a declaration 2
that results in a local homograph. 3

Ada.3.YOW.5 Bibliography 4

None 5

Ada.3.BJL Namespace Issues [BJL] 6
With the exception of unsafe programming, this vulnerability is not applicable to Ada as Ada 7
provides packages to control namespaces and enforces block structure semantics. 8

Ada.3.IHN Type System [IHN] 9

Ada.3.IHN.1 Terminology and features 10

Explicit Conversion: The Ada term explicit conversion is equivalent to the term cast in Section 11
6.IHN.3. 12
 13
Implicit Conversion: The Ada term implicit conversion is equivalent to the term coercion. 14
 15
Ada uses a strong type system based on name equivalence rules. It distinguishes types, which 16
embody statically checkable equivalence rules, and subtypes, which associate dynamic 17
properties with types, e.g., index ranges for array subtypes or value ranges for numeric subtypes. 18
Subtypes are not types and their values are implicitly convertible to all other subtypes of the same 19
type. All subtype and type conversions ensure by static or dynamic checks that the converted 20
value is within the value range of the target type or subtype. If a static check fails, then the 21
program is rejected by the compiler. If a dynamic check fails, then an exception Constraint_Error is 22
raised. 23
 24
To effect a transition of a value from one type to another, three kinds of conversions can be 25
applied in Ada: 26

a) Implicit conversions: there are few situations in Ada that allow for implicit conversions. 27
An example is the assignment of a value of a type to a polymorphic variable of an 28
encompassing class. In all cases where implicit conversions are permitted, neither static 29
nor dynamic type safety or application type semantics (see below) are endangered by the 30
conversion. 31

b) Explicit conversions: various explicit conversions between related types are allowed in 32
Ada. All such conversions ensure by static or dynamic rules that the converted value is a 33
valid value of the target type. Violations of subtype properties cause an exception to be 34
raised by the conversion. 35

c) Unchecked conversions: Conversions that are obtained by instantiating the generic 36
subprogram Unchecked_Conversion are unsafe and enable all vulnerabilities mentioned in 37
Section 6.IHN as the result of a breach in a strong type system. Unchecked_Conversion is 38
occasionally needed to interface with type-less data structures, e.g., hardware registers. 39

A guiding principle in Ada is that, with the exception of using instances of Unchecked_Conversion, 40
no undefined semantics can arise from conversions and the converted value is a valid value of 41
the target type. 42

Ada.3.IHN.2 Description of vulnerability 43

Implicit conversions cause no application vulnerability, as long as resulting exceptions are 44
properly handled. 45

13

 1
Explicit conversions can violate the application type semantics. e.g., conversion from feet to 2
meter, or, in general, between types that denote value of different units, without the appropriate 3
conversion factors can cause application vulnerabilities. However, no undefined semantics can 4
result and no values can arise that are outside the range of legal values of the target type. 5
 6
Failure to apply correct conversion factors when explicitly converting among types for different 7
units will result in application failures due to incorrect values. 8
 9
Failure to handle the exceptions raised by failed checks of dynamic subtype properties cause 10
systems, threads or components to halt unexpectedly. 11
 12
Unchecked conversions circumvent the type system and therefore can cause unspecified 13
behaviour (see Section Ada.3.AMV). 14

Ada.3.IHN.3 Avoiding the vulnerability or mitigating its effects 15

• The predefined ‘Valid attribute for a given subtype may be applied to any value to 16
ascertain if the value is a legal value of the subtype. This is especially useful when 17
interfacing with type-less systems or after Unchecked_Conversion. 18

• A conceivable measure to prevent incorrect unit conversions is to restrict explicit 19
conversions to the bodies of user-provided conversion functions that are then used as the 20
only means to effect the transition between unit systems. These bodies are to be critically 21
reviewed for proper conversion factors. 22

• Exceptions raised by type and subtype conversions shall be handled. 23

Ada.3.IHN.4 Implications for standardization 24

None 25

Ada.3.IHN.5 Bibliography 26

None 27

Ada.3.STR Bit Representation [STR] 28

Ada.3.STR.1 Terminology and features 29

Operational and Representation Attributes: The values of certain implementation-dependent 30
characteristics can be obtained by querying the applicable attributes. Some attributes can be 31
specified by the user; for example: 32

• X'Alignment: allows the alignment of objects on a storage unit boundary at an integral 33
multiple of a specified value. 34

• X'Size: denotes the size in bits of the representation of the object. 35
• X'Component_Size: denotes the size in bits of components of the array type X. 36

 37
Record Representation Clauses: provide a way to specify the layout of components within 38
records, that is, their order, position, and size. 39
 40
Storage Place Attributes: for a component of a record, the attributes (integer) Position, First_Bit 41
and Last_Bit are used to specify the component position and size within the record. 42
 43
Bit Ordering: Ada allows use of the attribute Bit_Order of a type to query or specify its bit ordering 44
representation (High_Order_First and Low_Order_First). The default value is implementation 45
defined and available at System.Bit_Order. 46

14

 1
Atomic and Volatile: Ada can force every access to an object to be an indivisible access to the 2
entity in memory instead of possibly partial, repeated manipulation of a local or register copy. In 3
Ada, these properties are specified by pragmas. 4
 5
Endianness: the programmer may specify the endianness of the representation through the use 6
of a pragma. 7

Ada.3.STR.2 Description of vulnerability 8

In general, the type system of Ada protects against the vulnerabilities outlined in Section 6.STR. 9
However, the use of Unchecked_Conversion, calling foreign language routines, and unsafe 10
manipulation of address representations voids these guarantees. 11

The vulnerabilities caused by the inherent conceptual complexity of bit level programming are as 12
described in Section 6.STR. 13

Ada.3.STR.3 Avoiding the vulnerability or mitigating its effects 14
The vulnerabilities associated with the complexity of bit-level programming can be mitigated by: 15

• The use of record and array types with the appropriate representation specifications 16
added so that the objects are accessed by their logical structure rather than their physical 17
representation. These representation specifications may address: order, position, and 18
size of data components and fields. 19

• The use of pragma Atomic and pragma Atomic_Components to ensure that all updates to 20
objects and components happen atomically. 21

• The use of pragma Volatile and pragma Volatile_Components to notify the compiler that 22
objects and components must be read immediately before use as other devices or 23
systems may be updating them between accesses of the program. 24

• The default object layout chosen by the compiler may be queried by the programmer to 25
determine the expected behaviour of the final representation. 26

For the traditional approach to bit-level programming, Ada provides modular types and literal 27
representations in arbitrary base from 2 to 16 to deal with numeric entities and correct handling of 28
the sign bit. The use of pragma Pack on arrays of Booleans provides a type-safe way of 29
manipulating bit strings and eliminates the use of error prone arithmetic operations. 30

Ada.3.STR.4 Implications for standardization 31
None 32

Ada.3.STR.5 Bibliography 33
None 34

Ada.3.PLF Floating-point Arithmetic [PLF] 35

Ada.3.PLF.1 Terminology and features 36

User-defined floating-point types: Types declared by the programmer that allow specification of 37
digits of precision and optionally a range of values. 38

Static expressions: Expressions with statically known operands that are computed with exact 39
precision by the compiler. 40

15

Fixed-point types: Real-valued types with a specified error bound (called the 'delta' of the type) 1
that provide arithmetic operations carried out with fixed precision (rather than the relative 2
precision of floating-point types). 3

Ada specifies adherence to the IEEE Floating Point Standards (IEEE-754-2008, IEEE-854-1987). 4

Ada.3.PLF.2 Description of vulnerability 5
The vulnerability in Ada is as described in Section 6.PLF.2. 6

Ada.3.PLF.3 Avoiding the vulnerability or mitigating its effects 7

• Rather than using predefined types, such as Float and Long_Float, whose precision may 8
vary according to the target system, declare floating-point types that specify the required 9
precision (e.g., digits 10). Additionally, specifying ranges of a floating point type enables 10
constraint checks which prevents the propagation of infinities and NaNs. 11

• Avoid comparing floating-point values for equality. Instead, use comparisons that account 12
for the approximate results of computations. Consult a numeric analyst when appropriate. 13

• Make use of static arithmetic expressions and static constant declarations when possible, 14
since static expressions in Ada are computed at compile time with exact precision. 15

• Use Ada's standardized numeric libraries (e.g., Generic_Elementary_Functions) for 16
common mathematical operations (trigonometric operations, logarithms, etc.). 17

• Use an Ada implementation that supports Annex G (Numerics) of the Ada standard, and 18
employ the "strict mode" of that Annex in cases where additional accuracy requirements 19
must be met by floating-point arithmetic and the operations of predefined numerics 20
packages, as defined and guaranteed by the Annex. 21

• Avoid direct manipulation of bit fields of floating-point values, since such operations are 22
generally target-specific and error-prone. Instead, make use of Ada's predefined floating-23
point attributes (e.g., 'Exponent). 24

• In cases where absolute precision is needed, consider replacement of floating-point types 25
and operations with fixed-point types and operations. 26

Ada.3.PLF.4 Implications for standardization 27
None 28

Ada.3.PLF.5 Bibliography 29
 30
IEEE 754-2008, IEEE Standard for Binary Floating Point Arithmetic, IEEE, 2008. 31
 32
IEEE 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic, IEEE, 1987. 33

Ada.3.CCB Enumerator Issues [CCB] 34

Ada.3.CCB.1 Terminology and features 35

Enumeration Type: An enumeration type is a discrete type defined by an enumeration of its 36
values, which may be named by identifiers or character literals. In Ada, the types Character and 37
Boolean are enumeration types. The defining identifiers and defining character literals of an 38
enumeration type must be distinct. The predefined order relations between values of the 39
enumeration type follow the order of corresponding position numbers. 40

16

Enumeration Representation Clause: An enumeration representation clause may be used to 1
specify the internal codes for enumeration literals. 2

Ada.3.CCB.2 Description of vulnerability 3

Enumeration representation specification may be used to specify non-default representations of an 4
enumeration type, for example when interfacing with external systems. All of the values in the 5
enumeration type must be defined in the enumeration representation specification. The numeric values 6
of the representation must preserve the original order. For example: 7

type IO_Types is (Null_Op, Open, Close, Read, Write, Sync); 8
for IO_Types use (Null_Op => 0, Open => 1, Close => 2, 9
 Read => 4, Write => 8, Sync => 16); 10

 11
An array may be indexed by such a type. Ada does not prescribe the implementation model for 12
arrays indexed by an enumeration type with non-contiguous values. Two options exist: Either the 13
array is represented “with holes” and indexed by the values of the enumeration type, or the array 14
is represented contiguously and indexed by the position of the enumeration value rather than the 15
value itself. In the former case, the vulnerability described in 6.CCB exists only if unsafe 16
programming is applied to access the array or its components outside the protection of the type 17
system. Within the type system, the semantics are well defined and safe. In the latter case, the 18
vulnerability described in 6.CCB does not exist. 19

The full range of possible values of the expression in a case statement must be covered by the 20
case choices. Two distinct choices of a case statement can not cover the same value. Choices 21
can be expressed by single values or subranges of values. The others clause may be used as 22
the last choice of a case statement to capture any remaining values of the case expression type 23
that are not covered by the case choices. These restrictions are enforced at compile time. 24
Identical rules apply to aggregates of arrays. 25

The remaining vulnerability is that unexpected values are captured by the others clause or a 26
subrange as case choice after an additional enumeration literal has been added to the 27
enumeration type definition. For example, when the range of the type Character was extended 28
from 128 characters to the 256 characters in the Latin-1 character type, an others clause for a 29
case statement with a Character type case expression originally written to capture cases 30
associated with the 128 characters type now captures the 128 additional cases introduced by the 31
extension of the type Character. Some of the new characters may have needed to be covered by 32
the existing case choices or new case choices. 33

 34

Ada.3.CCB.3 Avoiding the vulnerability or mitigating its effects 35

• For case statements and aggregates, do not use the others choice. 36

• For case statements and aggregates, mistrust subranges as choices after enumeration 37
literals have been added anywhere but the beginning or the end of the enumeration type 38
definition. 39

Ada.3.CCB.4 Implications for standardization 40

None 41

17

Ada.3.CCB.5 Bibliography 1

None 2

Ada.3.FLC Numeric Conversion Errors [FLC] 3

Ada.3.FLC.1 Terminology and features 4
User-defined scalar types: Types declared by the programmer for defining ordered sets of values 5
of various kinds, namely integer, enumeration, floating-point, and fixed-point types. The typing 6
rules of the language prevent intermixing of objects and values of distinct types. 7
 8
Range check: A run-time check that ensures the result of an operation is contained within the 9
range of allowable values for a given type or subtype, such as the check done on the operand of 10
a type conversion. 11

Ada.3.FLC.2 Description of vulnerability 12
Ada does not permit implicit conversions between different numeric types, hence cases of implicit 13
loss of data due to truncation cannot occur as they can in languages that allow type coercion 14
between types of different sizes. 15
 16
In the case of explicit conversions, range bound checks are applied, so no truncation can occur, 17
and an exception will be generated if the operand of the conversion exceeds the bounds of the 18
target type or subtype. 19
 20
The occurrence of an exception on a conversion can disrupt a computation, which could 21
potentially cause a failure mode or denial-of-service problems. 22
 23
Ada permits the definition of subtypes of existing types that can impose a restricted range of 24
values, and implicit conversions can occur for values of different subtypes belonging to the same 25
type, but such conversions still involve range checks that prevent any loss of data or violation of 26
the bounds of the target subtype. 27
 28
Loss of precision can occur on explicit conversions from a floating-point type to an integer type, 29
but in that case the loss of precision is being explicitly requested. Truncation cannot occur, and 30
will lead to Constraint_Error if attempted. 31
 32
There exist operations in Ada for performing shifts and rotations on values of unsigned types, but 33
such operations are also explicit (function calls), so must be applied deliberately by the 34
programmer, and can still only result in values that fit within the range of the result type of the 35
operation. 36

Ada.3.FLC.3 Avoiding the vulnerability or mitigating its effects 37

• Use Ada's capabilities for user-defined scalar types and subtypes to avoid accidental 38
mixing of logically incompatible value sets. 39

• Use range checks on conversions involving scalar types and subtypes to prevent 40
generation of invalid data. 41

• Use static analysis tools during program development to verify that conversions cannot 42
violate the range of their target. 43

Ada.3.FLC.4 Implications for standardization 44
None 45

18

Ada.3.FLC.5 Bibliography 1
None 2

Ada.3.CJM String Termination [CJM] 3
 4
With the exception of unsafe programming, this vulnerability is not applicable to Ada as strings in 5
Ada are not delimited by a termination character. Ada programs that interface to languages that 6
use null-terminated strings and manipulate such strings directly should apply the vulnerability 7
mitigations recommended for that language. 8

Ada.3.XYX Boundary Beginning Violation [XYX] 9

Ada.3.XYX.1 Terminology and features 10
None 11

Ada.3.XYX.2 Description of vulnerability 12
With the exception of unsafe programming, this vulnerability is absent from Ada programs: all 13
array indexing operations are checked automatically in Ada. The exception Constraint_Error is 14
raised when an index value is outside the bounds of the array, and all array objects are created 15
with explicit bounds. Pointer arithmetic cannot be used to index arrays, except through the use of 16
unchecked conversions (see Section Ada.3.AMV). The language distinguishes arrays whose 17
components are arrays, from multidimensional arrays, and the syntax reflects this distinction, 18
Each index must respect the bounds of the corresponding dimension. 19
 20
These bounds checks can be suppressed by means of the pragma Suppress, in which case the 21
vulnerability applies; however, the presence of such pragmas is easily detected, and generally 22
reserved for tight time-critical loops, even in production code. 23

Ada.3.XYX.3 Avoiding the vulnerability or mitigating its effects 24

• Do not suppress the checks provided by the language (see Section 5.9.5 of the Ada 95 25
Quality and Style Guide). 26

• Do not use unchecked conversion to manufacture index values. 27

• Use the attribute 'Range to describe iteration over arrays. 28

• Use subtypes to declare both array types and the index variables that will be used to 29
access them. 30

Ada.3.XYX.4 Implications for standardization 31
None 32

Ada.3.XYX.5 Bibliography 33
None 34

Ada.3.XYZ Unchecked Array Indexing [XYZ] 35

Ada.3.XYZ.1 Terminology and features 36
None 37

19

Ada.3.XYZ.2 Description of vulnerability 1
All array indexing is checked automatically in Ada, and raises an exception when indexes are out 2
of bounds. This is checked in all cases of indexing, including when arrays are passed to 3
subprograms. 4
 5
Programmers can write explicit bounds tests to prevent an exception when indexing out of 6
bounds, but failure to do so does not result in accessing storage outside of arrays. 7
 8
An explicit suppression of the checks can be requested by use of pragma Suppress, in which case 9
the vulnerability would apply; however, such suppression is easily detected, and generally 10
reserved for tight time-critical loops, even in production code. 11

Ada.3.XYZ.3 Avoiding the vulnerability or mitigating its effects 12

• Do not suppress the checks provided by the language. 13

• Use Ada's support for whole-array operations, such as for assignment and comparison, 14
plus aggregates for whole-array initialization, to reduce the use of indexing. 15

Ada.3.XYZ.4 Implications for standardization 16
None 17

Ada.3.XYZ.5 Bibliography 18
None 19

Ada.3.XYW Unchecked Array Copying [XYW] 20
 21
With the exception of unsafe programming, this vulnerability is not applicable to Ada as Ada 22
allows arrays to be copied by simple assignment (":="). The rules of the language ensure that no 23
overflow can happen; instead, the exception Constraint_Error is raised if the target of the 24
assignment is not able to contain the value assigned to it. Since array copy is provided by the 25
language, Ada does not provide unsafe functions to copy structures by address and length. 26

Ada.3.XZB Buffer Overflow [XZB] 27
 28
With the exception of unsafe programming, this vulnerability is not applicable to Ada as this 29
vulnerability can only happen as a consequence of unchecked array indexing or unchecked array 30
copying, which do not occur in Ada (see Ada.3.XYZ and Ada.3.XYW). 31

Ada.3.HFC Pointer Casting and Pointer Type Changes [HFC] 32

Ada.3.HFC.1 Terminology and features 33

The mechanisms available in Ada to alter the type of a pointer value are unchecked type 34
conversions and type conversions involving pointer types derived from a common root type. In 35
addition, uses of the unchecked address taking capabilities can create pointer types that 36
misrepresent the true type of the designated entity (see Section 13.10 of the Ada Language 37
Reference Manual). 38

Ada.3.HFC.2 Description of vulnerability 39

The vulnerabilities described in Section 6.HFC exist in Ada only if unchecked type conversions or 40
unsafe taking of addresses are applied (see Section Ada.2). Other permitted type conversions 41

20

can never misrepresent the type of the designated entity. 1

Checked type conversions that affect the application semantics adversely are possible. 2

Ada.3.HFC.3 Avoiding the vulnerability or mitigating its effects 3

• This vulnerability can be avoided in Ada by not using the features explicitly identified as 4
unsafe. 5

• Use ‘Access which is always type safe. 6

Ada.3.HFC.4 Implications for standardization 7

None 8

Ada.3.HFC.5 Bibliography 9

None 10

Ada.3.RVG Pointer Arithmetic [RVG] 11

With the exception of unsafe programming, this vulnerability is not applicable to Ada as Ada does 12
not allow pointer arithmetic. 13

Ada.3.XYH Null Pointer Dereference [XYH] 14

In Ada, this vulnerability does not exist, since compile-time or run-time checks ensure that no null 15
value can be dereferenced. 16
 17
Ada provides an optional qualification on access types that specifies and enforces that objects of 18
such types cannot have a null value. Non-nullness is enforced by rules that statically prohibit the 19
assignment of either null or values from sources not guaranteed to be non-null. 20

Ada.3.XYK Dangling Reference to Heap [XYK] 21

Ada.3.XYK.1 Terminology and features 22

Ada provides a model in which whole collections of heap-allocated objects can be deallocated 23
safely, automatically and collectively when the scope of the root access type ends. 24
 25
For global access types, allocated objects can only be deallocated through an instantiation of the 26
generic procedure Unchecked_Deallocation. 27

Ada.3.XYK.2 Description of vulnerability 28

Use of Unchecked_Deallocation can cause dangling references to the heap. The vulnerabilities 29
described in 6.XYK exist in Ada, when this feature is used, since Unchecked_Deallocation may be 30
applied even though there are outstanding references to the deallocated object. 31

Ada.3.XYK.3 Avoiding the vulnerability or mitigating its effects 32

• Use local access types where possible. 33

• Do not use Unchecked_Deallocation. 34

• Use Controlled types and reference counting. 35

21

Ada.3.XYK.4 Implications for standardization 1

None 2

Ada.3.XYK.5 Bibliography 3

None 4

Ada.3.SYM Templates and Generics [SYM] 5

With the exception of unsafe programming, this vulnerability is not applicable to Ada as the Ada 6
generics model is based on imposing a contract on the structure and operations of the types that 7
can be used for instantiation. Also, explicit instantiation of the generic is required for each 8
particular type. 9
 10
Therefore, the compiler is able to check the generic body for programming errors, independently 11
of actual instantiations. At each actual instantiation, the compiler will also check that the 12
instantiated type meets all the requirements of the generic contract. 13
 14
Ada also does not allow for ‘special case’ generics for a particular type, therefore behaviour is 15
consistent for all instantiations. 16

Ada.3.RIP Inheritance [RIP] 17

Ada.3.RIP.1 Terminology and features 18
Overriding Indicators: If an operation is marked as “overriding”, then the compiler will flag an error 19
if the operation is incorrectly named or the parameters are not as defined in the parent. Likewise, 20
if an operation is marked as “not overriding”, then the compiler will verify that there is no operation 21
being overridden in parent types. 22

Ada.3.RIP.2 Description of vulnerability 23
The vulnerability documented in Section 6.RIP applies to Ada. 24
 25
Ada only allows a restricted form of multiple inheritance, where only one of the multiple ancestors 26
(the parent) may define operations. All other ancestors (interfaces) can only specify the 27
operations’ signature. Therefore, Ada does not suffer from multiple inheritance derived 28
vulnerabilities. 29

Ada.3.RIP.3 Avoiding the vulnerability or mitigating its effects 30

• Use the overriding indicators on potentially inherited subprograms to ensure that the 31
intended contract is obeyed, thus preventing the accidental redefinition or failure to 32
redefine an operation of the parent. 33

• Use the mechanisms of mitigation described in the main body of the document. 34

Ada.3.RIP.4 Implications for standardization 35
Provide mechanisms to prevent further extensions of a type hierarchy. 36

Ada.3.RIP.5 Bibliography 37
None 38

22

Ada.3.LAV Initialization of Variables [LAV] 1

Ada.3.LAV.1 Terminology and features 2
None 3

Ada.3.LAV.2 Description of vulnerability 4

In Ada, referencing an uninitialized scalar (numeric or enumeration-type) variable is considered a 5
bounded error, with the possible outcomes being the raising of a Program_Error or Constraint_Error 6
exception, or continuing execution with some value of the variable’s type, or some other 7
implementation-defined behaviour. The implementation is required to prevent an uninitialized 8
variable used as an array index resulting in updating memory outside the array. Similarly, using 9
an uninitialized variable in a case statement cannot result in a jump to something other than one of 10
the case alternatives. Typically Ada implementations keep track of which variables might be 11
uninitialized, and presume they contain any value possible for the given size of the variable, 12
rather than presuming they are within whatever value range that might be associated with their 13
declared type or subtype. The vulnerability associated with use of an uninitialized scalar variable 14
is therefore that some result will be calculated incorrectly or an exception will be raised 15
unexpectedly, rather than a completely undefined behaviour. 16
 17
Pointer variables are initialized to null by default, and every dereference of a pointer is checked 18
for a null value. Therefore the only vulnerability associated with pointers is that a Constraint_Error 19
might be raised if a pointer is dereferenced that was not correctly initialized. 20
 21
In general in Ada it is possible to suppress run-time checking, using pragma Suppress. In the 22
presence of such a pragma, if a condition arises that would have resulted in a check failing and 23
an exception being raised, then the behaviour is completely undefined (“erroneous” in Ada 24
terms), and could include updating random memory or execution of unintended machine 25
instructions. 26
 27
Ada provides a generic function for unchecked conversion between (sub)types. If an uninitialized 28
variable is passed to an instance of this generic function and the value is not within the declared 29
range of the target subtype, then the subsequent execution is erroneous. 30
 31
Failure can occur when a scalar variable (including a scalar component of a composite variable) 32
is not initialized at its point of declaration, and there is a reference to the value of the variable on 33
a path that never assigned to the variable. The effects are bounded as described above, with the 34
possible effect being an incorrect result or an unexpected exception. 35

Ada.3.LAV.3 Avoiding the vulnerability or mitigating its effects 36

Scalar variables are not initialized by default in Ada. Pointer types are default-initialized to null. 37
Default initialization for record types may be specified by the user. For controlled types (those 38
descended from the language-defined type Controlled or Limited_Controlled), the user may also 39
specify an Initialize procedure which is invoked on all default-initialized objects of the type. 40
 41
This vulnerability can be avoided or mitigated in Ada in the following ways: 42

• Whenever possible, a variable should be replaced by an initialized constant, if in fact 43
there is only one assignment to the variable, and the assignment can be performed at the 44
point of initialization. Moving the object declaration closer to its point of use by creating a 45
local declare block can increase the frequency at which such a replacement is possible. 46
Note that initializing a variable with an inappropriate default value such as zero can result 47
in hiding underlying problems, because static analysis tools or the compiler itself will then 48
be unable to identify use before correct initialization. 49

23

• If the compiler has a mode that detects use before initialization, then this mode should be 1
enabled and any such warnings should be treated as errors. 2

• The pragma Normalize_Scalars can be used to ensure that scalar variables are always 3
initialized by the compiler in a repeatable fashion. This pragma is designed to initialize 4
variables to an out-of-range value if there is one, to avoid hiding errors. 5

Ada.3.LAV.4 Implications for standardization 6

Some languages (e.g., Java) require that all local variables either be initialized at the point of 7
declaration or on all paths to a reference. Such a rule could be considered for Ada. 8

Ada.3.LAV.5 Bibliography 9

None 10

Ada.3.XYY Wrap-around Error [XYY] 11
With the exception of unsafe programming, this vulnerability is not applicable to Ada as wrap-12
around arithmetic in Ada is limited to modular types Arithmetic operations on such types use 13
modulo arithmetic, and thus no such operation can create an invalid value of the type. 14
 15
Ada raises the predefined exception Constraint_Error whenever an attempt is made to increment 16
an integer above its maximum positive value or to decrement an integer below its maximum 17
negative value. Operations to shift and rotate numeric values apply only to modular integer types, 18
and always produce values that belong to the type. In Ada there is no confusion between logical 19
and arithmetic shifts. 20

Ada.3.XZI Sign Extension Error [XZI] 21
With the exception of unsafe programming, this vulnerability is not applicable to Ada as Ada does 22
not, explicitly or implicitly, allow unsigned extension operations to apply to signed entities or vice-23
versa. 24

Ada.3.JCW Operator Precedence/Order of Evaluation [JCW] 25

Ada.3.JCW.1 Terminology and features 26
None 27

Ada.3.JCW.2 Description of vulnerability 28
Since this vulnerability is about "incorrect beliefs" of programmers, there is no way to establish a 29
limit to how far incorrect beliefs can go. However, Ada is less susceptible to that vulnerability than 30
many other languages, since 31

• Ada only has six levels of precedence and associativity is closer to common 32
expectations. For example, an expression like A = B or C = D will be parsed as expected, 33
i.e. (A = B) or (C = D). 34

• Mixed logical operators are not allowed without parentheses, i.e., "A or B or C" is legal, as 35
well as "A and B and C", but "A and B or C" is not (must write "(A and B) or C" or "A and (B 36
or C)". 37

• Assignment is not an operator in Ada. 38

Ada.3.JCW.3 Avoiding the vulnerability or mitigating its effects 39

The general mitigation measures can be applied to Ada like any other language. 40

24

Ada.3.JCW.4 Implications for standardization 1
None 2

Ada.3.JCW.5 Bibliography 3
None 4

Ada.3.SAM Side-effects and Order of Evaluation [SAM] 5

Ada.3.SAM.1 Terminology and features 6
None 7

Ada.3.SAM.2 Description of vulnerability 8
There are no operators in Ada with direct side effects on their operands using the language-9
defined operations, especially not the increment and decrement operation. Ada does not permit 10
multiple assignments in a single expression or statement. 11
 12
There is the possibility though to have side effects through function calls in expressions where the 13
function modifies globally visible variables. Although functions only have "in" parameters, 14
meaning that they are not allowed to modify the value of their parameters, they may modify the 15
value of global variables. Operators in Ada are functions, so, when defined by the user, although 16
they cannot modify their own operands, they may modify global state and therefore have side 17
effects. 18
 19
Ada allows the implementation to choose the association of the operators with operands of the 20
same precedence level (in the absence of parentheses imposing a specific association). The 21
operands of a binary operation are also evaluated in an arbitrary order, as happens for the 22
parameters of any function call. In the case of user-defined operators with side effects, this 23
implementation dependency can cause unpredictability of the side effects. 24

Ada.3.SAM.3 Avoiding the vulnerability or mitigating its effects 25

• Make use of one or more programming guidelines which prohibit functions that modify 26
global state, and can be enforced by static analysis. 27

• Keep expressions simple. Complicated code is prone to error and difficult to maintain. 28

• Always use brackets to indicate order of evaluation of operators of the same precedence 29
level. 30

Ada.3.SAM.4 Implications for standardization 31
Add the ability to declare in the specification of a function that it is pure, i.e., it has no side effects. 32

Ada.3.SAM.5 Bibliography 33
None 34

Ada.3.KOA Likely Incorrect Expression [KOA] 35

Ada.3.KOA.1 Terminology and features 36
None 37

25

Ada.3.KOA.2 Description of vulnerability 1
An instance of this vulnerability consists of two syntactically similar constructs such that the 2
inadvertent substitution of one for the other may result in a program which is accepted by the 3
compiler but does not reflect the intent of the author. 4
 5
The examples given in 6.KOA are not problems in Ada because of Ada's strong typing and 6
because an assignment is not an expression in Ada. 7
 8
In Ada, a type conversion and a qualified expression are syntactically similar, differing only in the 9
presence or absence of a single character: 10

 Type_Name (Expression) -- a type conversion 11

vs. 12

 Type_Name'(Expression) -- a qualified expression 13

Typically, the inadvertent substitution of one for the other results in either a semantically incorrect 14
program which is rejected by the compiler or in a program which behaves in the same way as if 15
the intended construct had been written. In the case of a constrained array subtype, the two 16
constructs differ in their treatment of sliding (conversion of an array value with bounds 100 .. 103 17
to a subtype with bounds 200 .. 203 will succeed; qualification will fail a run-time check. 18
 19
Similarly, a timed entry call and a conditional entry call with an else-part that happens to begin 20
with a delay statement differ only in the use of "else" vs. "or" (or even "then abort" in the case of a 21
asynchronous_select statement). 22
 23
Probably the most common correctness problem resulting from the use of one kind of expression 24
where a syntactically similar expression should have been used has to do with the use of short-25
circuit vs. non-short-circuit Boolean-valued operations (i.e., "and then" and "or else" vs. "and" and 26
"or"), as in 27

if (Ptr /= null) and (Ptr.all.Count > 0) then ... end if; 28
-- should have used "and then" to avoid dereferencing null 29

Ada.3.KOA.3 Avoiding the vulnerability or mitigating its effects 30
• Compilers and other static analysis tools can detect some cases (such as the preceding 31

example) where short-circuited evaluation could prevent the failure of a run-time check. 32
 33

• Developers may also choose to use short-circuit forms by default (errors resulting from 34
the incorrect use of short-circuit forms are much less common), but this makes it more 35
difficult for the author to express the distinction between the cases where short-circuited 36
evaluation is known to be needed (either for correctness or for performance) and those 37
where it is not. 38

Ada.3.KOA.4 Implications for standardization 39
None 40

Ada.3.KOA.5 Bibliography 41
None 42

Ada.3.XYQ Dead and Deactivated Code [XYQ] 43

Ada.3.XYQ.1 Terminology and features 44
None 45

26

Ada.3.XYQ.2 Description of vulnerability 1
Ada allows the usual sources of dead code (described in 6.XYQ.3) that are common to most 2
conventional programming languages. 3

Ada.3.XYQ.3 Avoiding the vulnerability or mitigating its effects 4
Implementation specific mechanisms may be provided to support the elimination of dead code. In 5
some cases, pragmas such as Restrictions, Suppress, or Discard_Names may be used to inform the 6
compiler that some code whose generation would normally be required for certain constructs 7
would be dead because of properties of the overall system, and that therefore the code need not 8
be generated. 9

Ada.3.XYQ.4 Implications for standardization 10
None 11

Ada.3.XYQ.5 Bibliography 12
None 13

Ada.3.CLL Switch Statements and Static Analysis [CLL] 14
With the exception of unsafe programming, this vulnerability is not applicable to Ada as 15
Ada requires that a case statement provide exactly one alternative for each value of the 16
expression's subtype. If the value of the expression is outside of the range of this subtype (e.g., 17
due to an uninitialized variable), then the resulting behaviour is well-defined (Constraint_Error is 18
raised). Control does not flow from one alternative to the next. Upon reaching the end of an 19
alternative, control is transferred to the end of the case statement. 20

Ada.3.EOJ Demarcation of Control Flow [EOJ] 21
With the exception of unsafe programming, this vulnerability is not applicable to Ada as the Ada 22
syntax describes several types of compound statements that are associated with control flow 23
including if statements, loop statements, case statements, select statements, and extended return 24
statements. Each of these forms of compound statements require unique syntax that marks the 25
end of the compound statement. 26

Ada.3.TEX Loop Control Variables [TEX] 27
With the exception of unsafe programming, this vulnerability is not applicable to Ada as Ada 28
defines a for loop where the number of iterations is controlled by a loop control variable (called a 29
loop parameter). This value has a constant view and cannot be updated within the sequence of 30
statements of the body of the loop. 31

Ada.3.XZH Off-by-one Error [XZH] 32

Ada.3.XZH.1 Terminology and features 33

Scalar Type: A Scalar type comprises enumeration types, integer types, and real types. 34

Attribute: An Attribute is a characteristic of a declaration that can be queried by special syntax to 35
return a value corresponding to the requested attribute. 36

The language defined attributes applicable to scalar types and array types that help address this 37
vulnerability are 'First, 'Last, 'Range, and 'Length. 38

27

Ada.3.XZH.2 Description of vulnerability 1

Confusion between the need for < and <= or > and >= in a test. 2
A for loop in Ada does not involve the programmer having to specify a conditional test for loop 3
termination. Instead, the starting and ending value of the loop are specified which eliminates this 4
source of off by one errors. A while loop however, lets the programmer specify the loop 5
termination expression, which could be susceptible to an off by one error. 6

Confusion as to the index range of an algorithm. 7
Although there are language defined attributes to symbolically reference the start and end values 8
for a loop iteration, the language does allow the use of explicit values and loop termination tests. 9
Off-by-one errors can result in these circumstances. 10
 11
Care should be taken when using the 'Length Attribute in the loop termination expression. The 12
expression should generally be relative to the 'First value. 13
 14
The strong typing of Ada eliminates the potential for buffer overflow associated with this 15
vulnerability. If the error is not statically caught at compile time, then a run time check generates 16
an exception if an attempt is made to access an element outside the bounds of an array. 17

Failing to allow for storage of a sentinel value. 18
Ada does not use sentinel values to terminate arrays. There is no need to account for the storage 19
of a sentinel value, therefore this particular vulnerability concern does not apply to Ada. 20

Ada.3.XZH.3 Avoiding the vulnerability or mitigating its effects 21

• Whenever possible, a for loop should be used instead of a while loop. 22

• Whenever possible, the 'First, 'Last, and 'Range attributes should be used for loop 23
termination. If the 'Length attribute must be used, then extra care should be taken to 24
ensure that the length expression considers the starting index value for the array. 25

Ada.3.XZH.4 Implications for standardization 26
None 27

Ada.3.XZH.5 Bibliography 28
None 29

Ada.3.EWD Structured Programming [EWD] 30

Ada.3.EWD.1 Terminology and features 31
None 32

Ada.3.EWD.2 Description of vulnerability 33
Ada programs can exhibit many of the vulnerabilities noted in the parent report: leaving a loop at 34
an arbitrary point, local jumps (goto), and multiple exit points from subprograms. 35
 36
It does not suffer from non-local jumps and multiple entries to subprograms. 37

28

Ada.3.EWD.3 Avoiding the vulnerability or mitigating its effects 1
Avoid the use of goto, loop exit statements, return statements in procedures and more than one 2
return statement in a function. 3

Ada.3.EWD.4 Implications for standardization 4
Pragma Restrictions could be extended to allow the use of these features to be statically checked. 5

Ada.3.EWD.5 Bibliography 6
None 7

Ada.3.CSJ Passing Parameters and Return Values [CSJ] 8

Ada.3.CSJ.1 Terminology and features 9
None 10

Ada.3.CSJ.2 Description of vulnerability 11
Ada employs the mechanisms (e.g., modes in, out and in out) that are recommended in Section 12
6.CSJ. These mode definitions are not optional, mode in being the default. The remaining 13
vulnerability is aliasing when a large object is passed by reference. 14

Ada.3.CSJ.3 Avoiding the vulnerability of mitigating its effects 15
• Follow avoidance advice in Section 6.CSJ. 16

 17

Ada.3.CSJ.4 Implications for standardization 18
None 19

Ada.3.CSJ.5 Bibliography 20
None 21

Ada.3.DCM Dangling References to Stack Frames [DCM] 22

Ada.3.DCM.1 Terminology and features 23
In Ada, the attribute 'Address yields a value of some system-specific type that is not equivalent to 24
a pointer. The attribute 'Access provides an access value (what other languages call a pointer). 25
Addresses and access values are not automatically convertible, although a predefined set of 26
generic functions can be used to convert one into the other. Access values are typed, that is to 27
say can only designate objects of a particular type or class of types. 28

Ada.3.DCM.2 Description of vulnerability 29
As in other languages, it is possible to apply the 'Address attribute to a local variable, and to make 30
use of the resulting value outside of the lifetime of the variable. However, 'Address is very rarely 31
used in this fashion in Ada. Most commonly, programs use 'Access to provide pointers to static 32
objects, and the language enforces accessibility checks whenever code attempts to use this 33
attribute to provide access to a local object outside of its scope. These accessibility checks 34
eliminate the possibility of dangling references. 35
 36

29

As for all other language-defined checks, accessibility checks can be disabled over any portion of 1
a program by using the Suppress pragma. The attribute Unchecked_Access produces values that 2
are exempt from accessibility checks. 3

Ada.3.DCM.3 Avoiding the vulnerability or mitigating its effects 4
• Only use 'Address attribute on static objects (e.g., a register address). 5
• Do not use 'Address to provide indirect untyped access to an object. 6
• Do not use conversion between Address and access types. 7
• Use access types in all circumstances when indirect access is needed. 8
• Do not suppress accessibility checks. 9
• Avoid use of the attribute Unchecked_Access. 10

Ada.3.DCM.4 Implications for standardization 11
Pragma Restrictions could be extended to restrict the use of 'Address attribute to library level static 12
objects. 13

Ada.3.DCM.5 Bibliography 14
None 15

Ada.3.OTR Subprogram Signature Mismatch [OTR] 16

Ada.3.OTR.1 Terminology and features 17

Default expression: an expression of the formal object type that may be used to initialize the 18
formal object if an actual object is not provided. 19

Ada.3.OTR.2 Description of vulnerability 20

There are two concerns identified with this vulnerability. The first is the corruption of the execution 21
stack due to the incorrect number or type of actual parameters. The second is the corruption of 22
the execution stack due to calls to externally compiled modules. 23
 24
In Ada, at compilation time, the parameter association is checked to ensure that the type of each 25
actual parameter is the type of the corresponding formal parameter. In addition, the formal 26
parameter specification may include default expressions for a parameter. Hence, the procedure 27
may be called with some actual parameters missing. In this case, if there is a default expression 28
for the missing parameter, then the call will be compiled without any errors. If default expressions 29
are not specified, then the procedure call with insufficient actual parameters will be flagged as an 30
error at compilation time. 31
 32
Caution must be used when specifying default expressions for formal parameters, as their use 33
may result in successful compilation of subprogram calls with an incorrect signature. The 34
execution stack will not be corrupted in this event but the program may be executing with 35
unexpected values. 36
 37
When calling externally compiled modules that are Ada program units, the type matching and 38
subprogram interface signatures are monitored and checked as part of the compilation and 39
linking of the full application. When calling externally compiled modules in other programming 40
languages, additional steps are needed to ensure that the number and types of the parameters 41
for these external modules are correct. 42

Ada.3.OTR.3 Avoiding the vulnerability or mitigating its effects 43

• Do not use default expressions for formal parameters. 44

30

• Interfaces between Ada program units and program units in other languages can be 1
managed using pragma Import to specify subprograms that are defined externally and 2
pragma Export to specify subprograms that are used externally. These pragmas specify 3
the imported and exported aspects of the subprograms, this includes the calling 4
convention. Like subprogram calls, all parameters need to be specified when using 5
pragma Import and pragma Export. 6

• The pragma Convention may be used to identify when an Ada entity should use the calling 7
conventions of a different programming language facilitating the correct usage of the 8
execution stack when interfacing with other programming languages. 9

• In addition, the Valid attribute may be used to check if an object that is part of an 10
interface with another language has a valid value and type. 11

Ada.3.OTR.4 Implications for standardization 12

None 13

Ada.3.OTR.5 Bibliography 14

None 15

Ada.3.GDL Recursion [GDL] 16

Ada.3.GDL.1 Terminology and features 17

None 18

Ada.3.GDL.2 Description of vulnerability 19

Ada permits recursion. The exception Storage_Error is raised when the recurring execution results 20
in insufficient storage. 21

Ada.3.GDL.3 Avoiding the vulnerability or mitigating its effects 22

If recursion is used, then a Storage_Error exception handler may be used to handle insufficient 23
storage due to recurring execution. 24
 25
Alternatively, the asynchronous control construct may be used to time the execution of a recurring 26
call and to terminate the call if the time limit is exceeded. 27
 28
In Ada, the pragma Restrictions may be invoked with the parameter No_Recursion. In this case, the 29
compiler will ensure that as part of the execution of a subprogram the same subprogram is not 30
invoked. 31

Ada.3.GDL.4 Implications for standardization 32

None 33

Ada.3.GDL.5 Bibliography 34

None 35

31

Ada.3.NZN Returning Error Status [NZN] 1

Ada.3.NZN.1 Terminology and features 2
None 3

Ada.3.NZN.2 Description of vulnerability 4

Ada offers a set of predefined exceptions for error conditions that may be detected by checks that 5
are compiled into a program. In addition, the programmer may define exceptions that are 6
appropriate for their application. These exceptions are handled using an exception handler. 7
Exceptions may be handled in the environment where the exception occurs or may be 8
propagated out to an enclosing scope. 9
 10
As described in Section 6.NZN, there is some complexity in understanding the exception handling 11
methodology especially with respect to object-oriented programming and multi-threaded 12
execution. 13

Ada.3.NZN.3 Avoiding the vulnerability or mitigating its effects 14

In addition to the mitigations defined in the main text, values delivered to an Ada program from an 15
external device may be checked for validity prior to being used. This is achieved by testing the 16
Valid attribute. 17

Ada.3.NZN.4 Implications for standardization 18

None 19

Ada.3.NZN.5 Bibliography 20

None 21

Ada.3.REU Termination Strategy [REU] 22

Ada.3.REU.1 Terminology and features 23

Ada.3.REU.2 Description of Vulnerability 24
An Ada system that consists of multiple tasks is subject to the same hazards as multithreaded 25
systems in other languages. A task that fails, for example, because its execution violates a 26
language-defined check, terminates quietly. 27
 28
Any other task that attempts to communicate with a terminated task will receive the exception 29
Tasking_Error. The undisciplined use of the abort statement or the asynchronous transfer of 30
control feature may destroy the functionality of a multitasking program. 31

Ada.3.REU.3 Avoiding the vulnerability or mitigating its effects 32

• Include exception handlers for every task, so that their unexpected termination can be 33
handled and possibly communicated to the execution environment. 34

• Use objects of controlled types to ensure that resources are properly released if a task 35
terminates unexpectedly. 36

• The abort statement should be used sparingly, if at all. 37

• For high-integrity systems, exception handling is usually forbidden. However, a top-level 38
exception handler can be used to restore the overall system to a coherent state. 39

32

• Define interrupt handlers to handle signals that come from the hardware or the operating 1
system. This mechanism can also be used to add robustness to a concurrent program. 2

• Annex C of the Ada Reference Manual (Systems Programming) defines the package 3
Ada.Task_Termination to be used to monitor task termination and its causes. 4

• Annex H of the Ada Reference Manual (High Integrity Systems) describes several 5
pragma, restrictions, and other language features to be used when writing systems for 6
high-reliability applications. For example, the pragma Detect_Blocking forces an 7
implementation to detect a potentially blocking operation within a protected operation, 8
and to raise an exception in that case. 9

Ada.3.REU.4 Implications for Standardization 10
None 11

Ada.3.REU.5 Bibliography 12
None 13

Ada 3.LRM Extra Intrinsics [LRM] 14

Ada 3.LRM.1 Terminology and features 15
The pragma Convention can specify that a given subprogram is intrinsic. The implementation of an 16
intrinsic subprogram is known to the compiler, and the user does not specify a body for it. 17

Ada 3.LRM.2 Description of Vulnerability 18
The vulnerability does not apply to Ada, because all subprograms, whether intrinsic or not, belong 19
to the same name space. This means that all subprograms must be explicitly declared, and the 20
same name resolution rules apply to all of them, whether they are predefined or user-defined. If 21
two subprograms with the same name and signature are visible (that is to say nameable) at the 22
same place in a program, then a call using that name will be rejected as ambiguous by the 23
compiler, and the programmer will have to specify (for example by means of a qualified name) 24
which subprogram is meant. 25

Ada 3.AMV Type-breaking Reinterpretation of Data [AMV] 26

Ada 3.AMV.1 Terminology and features 27
Ada provides a generic function Unchecked_Conversion, whose purpose is to impose a given target 28
type on a value of a distinct source type. This function must be instantiated for each pair of types 29
between which such a reinterpretation is desired. 30
 31
Ada also provides Address clauses that can be used to overlay objects of different types. 32
Variant records in Ada are discriminated types; the discriminant is part of the object and supports 33
consistency checks when accessing components of a given variant. In addition, for inter-language 34
communication, Ada also provides the pragma Unchecked_Union to indicate that objects of a given 35
variant type do not store their discriminants. Objects of such types are in fact free unions. 36

Ada 3.AMV.2 Description of vulnerability 37
Unchecked_Conversion can be used to bypass the type-checking rules, and its use is thus unsafe, 38
as in any other language. The same applies to the use of Unchecked_Union, even though the 39
language specifies various inference rules that the compiler must use to catch statically 40
detectable constraint violations. 41
 42

33

Type reinterpretation is a universal programming need, and no usable programming language 1
can exist without some mechanism that bypasses the type model. Ada provides these 2
mechanisms with some additional safeguards, and makes their use purposely verbose, to alert 3
the writer and the reader of a program to the presence of an unchecked operation. 4

Ada 3.AMV.3 Avoiding the vulnerability or mitigating its effects 5

• The fact that Unchecked_Conversion is a generic function that must be instantiated 6
explicitly (and given a meaningful name) hinders its undisciplined use, and places a loud 7
marker in the code wherever it is used. Well-written Ada code will have a small set of 8
instantiations of Unchecked_Conversion. 9

• Most implementations require the source and target types to have the same size in bits, 10
to prevent accidental truncation or sign extension. 11

• Unchecked_Union should only be used in multi-language programs that need to 12
communicate data between Ada and C or C++. Otherwise the use of discriminated types 13
prevents "punning" between values of two distinct types that happen to share storage. 14

• Using address clauses to obtain overlays should be avoided. If the types of the objects 15
are the same, then a renaming declaration is preferable. Otherwise, the pragma Import 16
should be used to inhibit the initialization of one of the entities so that it does not interfere 17
with the initialization of the other one. 18

Ada 3.AMV.4 Implications for Standardization 19
None 20

Ada 3.AMV.5 Bibliography 21
None 22

Ada.3.XYL Memory Leak [XYL] 23

Ada.3.XYL.1 Terminology and features 24

Allocator: The Ada term for the construct that allocates storage from the heap or from a storage 25
pool. 26

Storage Pool: A named location in an Ada program where all of the objects of a single access 27
type will be allocated. A storage pool can be sized exactly to the requirements of the application 28
by allocating only what is needed for all objects of a single type without using the centrally 29
managed heap. Exceptions raised due to memory failures in a storage pool will not adversely 30
affect storage allocation from other storage pools or from the heap and do not suffer from 31
fragmentation. 32

The following Ada restrictions prevent the application from using any allocators: 33

pragma Restrictions(No_Allocators): prevents the use of allocators. 34

pragma Restrictions(No_Local_Allocators): prevents the use of allocators after the main 35
program has commenced. 36

pragma Restrictions(No_Implicit_Heap_Allocations): prevents the use of allocators that 37
would use the heap, but permits allocations from storage pools. 38

pragma Restrictions(No_Unchecked_Deallocations): prevents allocated storage from being 39
returned and hence effectively enforces storage pool memory approaches or a 40
completely static approach to access types. Storage pools are not affected by this 41
restriction as explicit routines to free memory for a storage pool can be created. 42

34

Ada.3.XYL.2 Description of vulnerability 1
For objects that are allocated from the heap without the use of reference counting, the memory 2
leak vulnerability is possible in Ada. For objects that must allocate from a storage pool, the 3
vulnerability can be present but is restricted to the single pool and which makes it easier to detect 4
by verification. For objects that are objects of a controlled type that uses referencing counting and 5
that are not part of a cyclic reference structure, the vulnerability does not exist. 6
 7
Ada does not mandate the use of a garbage collector, but Ada implementations are free to 8
provide such memory reclamation. For applications that use and return memory on an 9
implementation that provides garbage collection, the issues associated with garbage collection 10
exist in Ada. 11

Ada.3.XYL.3 Avoiding the vulnerability or mitigating its effects 12

• Use storage pools where possible. 13

• Use controlled types and reference counting to implement explicit storage management 14
systems that cannot have storage leaks. 15

• Use a completely static model where all storage is allocated from global memory and 16
explicitly managed under program control. 17

Ada.3.XYL.4 Implications for standardization 18
Future Standardization of Ada should consider implementing a language-provided reference 19
counting storage management mechanism for dynamic objects. 20

Ada.3.XYL.5 Bibliography 21
None 22

Ada.3.TRJ Argument Passing to Library Functions [TRJ] 23

Ada.3.TRJ.1 Terminology and features 24
Separate Compilation: Ada requires that calls on libraries are checked for illegal situations as if 25
the called routine were declared locally. 26

Ada.3.TRJ.2 Description of vulnerability 27
The general vulnerability that parameters might have values precluded by preconditions of the 28
called routine applies to Ada as well. 29
 30
However, to the extent that the preclusion of values can be expressed as part of the type system 31
of Ada, the preconditions are checked by the compiler statically or dynamically and thus are no 32
longer vulnerabilities. For example, any range constraint on values of a parameter can be 33
expressed in Ada by means of type or subtype declarations. Type violations are detected at 34
compile time, subtype violations cause runtime exceptions. 35

Ada.3.TRJ.3 Avoiding the vulnerability or mitigating its effects 36

• Exploit the type and subtype system of Ada to express preconditions (and postconditions) 37
on the values of parameters. 38

• Document all other preconditions and ensure by guidelines that either callers or callees 39
are responsible for checking the preconditions (and postconditions). Wrapper 40
subprograms for that purpose are particularly advisable. 41

35

• Specify the response to invalid values. 1

Ada.3.TRJ.4 Implications for standardization 2
Future standardization of Ada should consider support for arbitrary pre- and postconditions. 3

Ada.3.TRJ.5 Bibliography 4
None 5

Ada.3.NYY Dynamically-linked Code and Self-modifying Code [NYY] 6
With the exception of unsafe programming, this vulnerability is not applicable to Ada as Ada 7
supports neither dynamic linking nor self-modifying code. The latter is possible only by exploiting 8
other vulnerabilities of the language in the most malicious ways and even then it is still very 9
difficult to achieve. 10

Ada.3.NSQ Library Signature [NSQ] 11

Ada.3.NSQ.1 Terminology and features 12
None 13

Ada.3.NSQ.2 Description of vulnerability 14
Ada provides mechanisms to explicitly interface to modules written in other languages. Pragmas 15
Import, Export and Convention permit the name of the external unit and the interfacing convention 16
to be specified. 17
 18
Even with the use of pragma Import, pragma Export and pragma Convention the vulnerabilities 19
stated in Section 6.NSQ are possible. Names and number of parameters change under 20
maintenance; calling conventions change as compilers are updated or replaced, and languages 21
for which Ada does not specify a calling convention may be used. 22

Ada.3.NSQ.3 Avoiding the vulnerability or mitigating its effects 23
The mitigation mechanisms of Section 6.NSQ.5 are applicable. 24

Ada.3.NSQ.4 Implications for standardization 25
Ada standardization committees can work with other programming language standardization 26
committees to define library interfaces that include more than a program calling interface. In 27
particular, mechanisms to qualify and quantify ranges of behaviour, such as pre-conditions, post-28
conditions and invariants, would be helpful. 29

Ada.3.NSQ.5 Bibliography 30
None 31

Ada.3.HJW Unanticipated Exceptions from Library Routines [HJW] 32

Ada.3.HJW.1 Terminology and features 33
None 34

Ada.3.HJW.2 Description of vulnerability 35
Ada programs are capable of handling exceptions at any level in the program, as long as any 36
exception naming and delivery mechanisms are compatible between the Ada program and the 37

36

library components. In such cases the normal Ada exception handling processes will apply, and 1
either the calling unit or some subprogram or task in its call chain will catch the exception and 2
take appropriate programmed action, or the task or program will terminate. 3
 4
If the library components themselves are written in Ada, then Ada's exception handling 5
mechanisms let all called units trap any exceptions that are generated and return error conditions 6
instead. If such exception handling mechanisms are not put in place, then exceptions can be 7
unexpectedly delivered to an caller. 8
 9
If the interface between the Ada units and the library routine being called does not adequately 10
address the issue of naming, generation and delivery of exceptions across the interface, then the 11
vulnerabilities as expressed in Section 6.HJW apply. 12

Ada.3.HJW.3 Avoiding the vulnerability or mitigating its effects 13

• Ensure that the interfaces with libraries written in other languages are compatible in the 14
naming and generation of exceptions. 15

• Put appropriate exception handlers in all routines that call library routines, including the 16
catch-all exception handler when others =>. 17

• Document any exceptions that may be raised by any Ada units being used as library 18
routines. 19

Ada.3.HJW.4 Implications for standardization 20
Ada standardization committees can work with other programming language standardization 21
committees to define library interfaces that include more than a program calling interface. In 22
particular, mechanisms to qualify and quantify ranges of behaviour, such as pre-conditions, post-23
conditions and invariants, would be helpful. 24

Ada.3.HJW.5 Bibliography 25
None 26
 27

	ISO/IEC JTC 1/SC 22/WG 23 N 0258
	N507, Annex Ada Draft 1, 20 June 2010.pdf
	ISO/IEC JTC1/SC22/WG9 N 507
	Annex Ada
	Ada.Specific information for vulnerabilities
	Ada.3.1.0 Status and history
	Ada.1 Identification of standards and associated documentation
	Ada.2 General terminology and concepts
	Ada.3.BRS Obscure Language Features [BRS]
	Ada.3.BRS.1 Terminology and features
	Ada.3.BRS.2 Description of vulnerability
	Ada.3.BRS.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.BRS.4 Implications for standardization
	Ada.3.BRS.5 Bibliography
	Ada.3.BQF Unspecified Behaviour [BQF]
	Ada.3.BQF.1 Terminology and features
	Ada.3.BQF.2 Description of vulnerability
	Ada.3.BQF.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.BQF.4 Implications for standardization
	Ada.3.BQF.5 Bibliography
	Ada.3.EWF Undefined Behaviour [EWF]
	Ada.3.EWF.1 Terminology and features
	Ada.3.EWF.2 Description of vulnerability
	Ada.3.EWF.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.EWF.4 Implications for standardization
	Ada.3.EWF.5 Bibliography
	Ada.3.FAB Implementation-Defined Behaviour [FAB]
	Ada.3.FAB.1 Terminology and features
	Ada.3.FAB.2 Description of vulnerability
	Ada.3.FAB.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.FAB.4 Implications for standardization
	Ada.3.FAB.5 Bibliography
	Ada.3.MEM Deprecated Language Features [MEM]
	Ada.3.MEM.1 Terminology and features
	Ada.3.MEM.2 Description of vulnerability
	Ada.3.MEM.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.MEM.4 Implications for standardization
	Ada.3.MEM.5 Bibliography
	Ada.3.NMP Pre-Processor Directives [NMP]
	Ada.3.NAI Choice of Clear Names [NAI]
	Ada.3.NAI.1 Terminology and features
	Ada.3.NAI.2 Description of vulnerability
	Ada.3.NAI.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.NAI.4 Implications for standardization
	Ada.3.NAI.5 Bibliography
	Ada.3.AJN Choice of Filenames and other External Identifiers [AJN]
	Ada.3.AJN.1 Terminology and features
	Ada.3.AJN.2 Description of vulnerability
	Ada.3.AJN.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.AJN.4 Implications for standardization
	Ada.3.AJN.5 Bibliography
	Ada.3.XYR Unused Variable [XYR]
	Ada.3.XYR.1 Terminology and features
	Ada.3.XYR.2 Description of vulnerability
	Ada.3.XYR.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.XYR.4 Implications for standardization
	Ada.3.XYR.5 Bibliography
	Ada.3.YOW Identifier Name Reuse [YOW]
	Ada.3.YOW.1 Terminology and features
	Ada.3.YOW.2 Description of vulnerability
	Ada.3.YOW.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.YOW.4 Implications for standardization
	Ada.3.YOW.5 Bibliography
	Ada.3.BJL Namespace Issues [BJL]
	Ada.3.IHN Type System [IHN]
	Ada.3.IHN.1 Terminology and features
	Ada.3.IHN.2 Description of vulnerability
	Ada.3.IHN.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.IHN.4 Implications for standardization
	Ada.3.IHN.5 Bibliography
	Ada.3.STR Bit Representation [STR]
	Ada.3.STR.1 Terminology and features
	Ada.3.STR.2 Description of vulnerability
	Ada.3.STR.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.STR.4 Implications for standardization
	Ada.3.STR.5 Bibliography
	Ada.3.PLF Floating-point Arithmetic [PLF]
	Ada.3.PLF.1 Terminology and features
	Ada.3.PLF.2 Description of vulnerability
	Ada.3.PLF.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.PLF.4 Implications for standardization
	Ada.3.PLF.5 Bibliography
	Ada.3.CCB Enumerator Issues [CCB]
	Ada.3.CCB.1 Terminology and features
	Ada.3.CCB.2 Description of vulnerability
	Ada.3.CCB.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.CCB.4 Implications for standardization
	Ada.3.CCB.5 Bibliography
	Ada.3.FLC Numeric Conversion Errors [FLC]
	Ada.3.FLC.1 Terminology and features
	Ada.3.FLC.2 Description of vulnerability
	Ada.3.FLC.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.FLC.4 Implications for standardization
	Ada.3.FLC.5 Bibliography
	Ada.3.CJM String Termination [CJM]
	Ada.3.XYX Boundary Beginning Violation [XYX]
	Ada.3.XYX.1 Terminology and features
	Ada.3.XYX.2 Description of vulnerability
	Ada.3.XYX.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.XYX.4 Implications for standardization
	Ada.3.XYX.5 Bibliography
	Ada.3.XYZ Unchecked Array Indexing [XYZ]
	Ada.3.XYZ.1 Terminology and features
	Ada.3.XYZ.2 Description of vulnerability
	Ada.3.XYZ.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.XYZ.4 Implications for standardization
	Ada.3.XYZ.5 Bibliography
	Ada.3.XYW Unchecked Array Copying [XYW]
	Ada.3.XZB Buffer Overflow [XZB]
	Ada.3.HFC Pointer Casting and Pointer Type Changes [HFC]
	Ada.3.HFC.1 Terminology and features
	Ada.3.HFC.2 Description of vulnerability
	Ada.3.HFC.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.HFC.4 Implications for standardization
	Ada.3.HFC.5 Bibliography
	Ada.3.RVG Pointer Arithmetic [RVG]
	Ada.3.XYH Null Pointer Dereference [XYH]
	Ada.3.XYK Dangling Reference to Heap [XYK]
	Ada.3.XYK.1 Terminology and features
	Ada.3.XYK.2 Description of vulnerability
	Ada.3.XYK.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.XYK.4 Implications for standardization
	Ada.3.XYK.5 Bibliography
	Ada.3.SYM Templates and Generics [SYM]
	Ada.3.RIP Inheritance [RIP]
	Ada.3.RIP.1 Terminology and features
	Ada.3.RIP.2 Description of vulnerability
	Ada.3.RIP.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.RIP.4 Implications for standardization
	Ada.3.RIP.5 Bibliography
	Ada.3.LAV Initialization of Variables [LAV]
	Ada.3.LAV.1 Terminology and features
	Ada.3.LAV.2 Description of vulnerability
	Ada.3.LAV.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.LAV.4 Implications for standardization
	Ada.3.LAV.5 Bibliography
	Ada.3.XYY Wrap-around Error [XYY]
	Ada.3.XZI Sign Extension Error [XZI]
	Ada.3.JCW Operator Precedence/Order of Evaluation [JCW]
	Ada.3.JCW.1 Terminology and features
	Ada.3.JCW.2 Description of vulnerability
	Ada.3.JCW.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.JCW.4 Implications for standardization
	Ada.3.JCW.5 Bibliography
	Ada.3.SAM Side-effects and Order of Evaluation [SAM]
	Ada.3.SAM.1 Terminology and features
	Ada.3.SAM.2 Description of vulnerability
	Ada.3.SAM.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.SAM.4 Implications for standardization
	Ada.3.SAM.5 Bibliography
	Ada.3.KOA Likely Incorrect Expression [KOA]
	Ada.3.KOA.1 Terminology and features
	Ada.3.KOA.2 Description of vulnerability
	Ada.3.KOA.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.KOA.4 Implications for standardization
	Ada.3.KOA.5 Bibliography
	Ada.3.XYQ Dead and Deactivated Code [XYQ]
	Ada.3.XYQ.1 Terminology and features
	Ada.3.XYQ.2 Description of vulnerability
	Ada.3.XYQ.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.XYQ.4 Implications for standardization
	Ada.3.XYQ.5 Bibliography
	Ada.3.CLL Switch Statements and Static Analysis [CLL]
	Ada.3.EOJ Demarcation of Control Flow [EOJ]
	Ada.3.TEX Loop Control Variables [TEX]
	Ada.3.XZH Off-by-one Error [XZH]
	Ada.3.XZH.1 Terminology and features
	Ada.3.XZH.2 Description of vulnerability
	Confusion between the need for < and <= or > and >= in a test.
	Confusion as to the index range of an algorithm.
	Failing to allow for storage of a sentinel value.

	Ada.3.XZH.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.XZH.4 Implications for standardization
	Ada.3.XZH.5 Bibliography
	Ada.3.EWD Structured Programming [EWD]
	Ada.3.EWD.1 Terminology and features
	Ada.3.EWD.2 Description of vulnerability
	Ada.3.EWD.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.EWD.4 Implications for standardization
	Ada.3.EWD.5 Bibliography
	Ada.3.CSJ Passing Parameters and Return Values [CSJ]
	Ada.3.CSJ.1 Terminology and features
	Ada.3.CSJ.2 Description of vulnerability
	Ada.3.CSJ.3 Avoiding the vulnerability of mitigating its effects
	Ada.3.CSJ.4 Implications for standardization
	Ada.3.CSJ.5 Bibliography
	Ada.3.DCM Dangling References to Stack Frames [DCM]
	Ada.3.DCM.1 Terminology and features
	Ada.3.DCM.2 Description of vulnerability
	Ada.3.DCM.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.DCM.4 Implications for standardization
	Ada.3.DCM.5 Bibliography
	Ada.3.OTR Subprogram Signature Mismatch [OTR]
	Ada.3.OTR.1 Terminology and features
	Ada.3.OTR.2 Description of vulnerability
	Ada.3.OTR.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.OTR.4 Implications for standardization
	Ada.3.OTR.5 Bibliography
	Ada.3.GDL Recursion [GDL]
	Ada.3.GDL.1 Terminology and features
	Ada.3.GDL.2 Description of vulnerability
	Ada.3.GDL.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.GDL.4 Implications for standardization
	Ada.3.GDL.5 Bibliography
	Ada.3.NZN Returning Error Status [NZN]
	Ada.3.NZN.1 Terminology and features
	Ada.3.NZN.2 Description of vulnerability
	Ada.3.NZN.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.NZN.4 Implications for standardization
	Ada.3.NZN.5 Bibliography
	Ada.3.REU Termination Strategy [REU]
	Ada.3.REU.1 Terminology and features
	Ada.3.REU.2 Description of Vulnerability
	Ada.3.REU.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.REU.4 Implications for Standardization
	Ada.3.REU.5 Bibliography
	Ada 3.LRM Extra Intrinsics [LRM]
	Ada 3.LRM.1 Terminology and features
	Ada 3.LRM.2 Description of Vulnerability
	Ada 3.AMV Type-breaking Reinterpretation of Data [AMV]
	Ada 3.AMV.1 Terminology and features
	Ada 3.AMV.2 Description of vulnerability
	Ada 3.AMV.3 Avoiding the vulnerability or mitigating its effects
	Ada 3.AMV.4 Implications for Standardization
	Ada 3.AMV.5 Bibliography
	Ada.3.XYL Memory Leak [XYL]
	Ada.3.XYL.1 Terminology and features
	Ada.3.XYL.2 Description of vulnerability
	Ada.3.XYL.3 Avoiding the vulnerability or mitigating its effects
	Use storage pools where possible.
	Ada.3.XYL.4 Implications for standardization
	Ada.3.XYL.5 Bibliography
	Ada.3.TRJ Argument Passing to Library Functions [TRJ]
	Ada.3.TRJ.1 Terminology and features
	Ada.3.TRJ.2 Description of vulnerability
	Ada.3.TRJ.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.TRJ.4 Implications for standardization
	Ada.3.TRJ.5 Bibliography
	Ada.3.NYY Dynamically-linked Code and Self-modifying Code [NYY]
	Ada.3.NSQ Library Signature [NSQ]
	Ada.3.NSQ.1 Terminology and features
	Ada.3.NSQ.2 Description of vulnerability
	Ada.3.NSQ.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.NSQ.4 Implications for standardization
	Ada.3.NSQ.5 Bibliography
	Ada.3.HJW Unanticipated Exceptions from Library Routines [HJW]
	Ada.3.HJW.1 Terminology and features
	Ada.3.HJW.2 Description of vulnerability
	Ada.3.HJW.3 Avoiding the vulnerability or mitigating its effects
	Ada.3.HJW.4 Implications for standardization
	Ada.3.HJW.5 Bibliography

